EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
1 / G* = = [ ] ω , , / T] / c [ [x,t] ] [-1] =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =operador cujo observável corresponde à ENERGIA TOTAL DO SIS ] é um TEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI.
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..
A energia cinética (newtoniana ou clássica) de uma partícula de massa m e velocidade v é dada pela expressão:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde vx, vy e vz são as componentes cartesianas da velocidade v. H é o hamiltoniano, e portanto será utilizado como símbolo da energia dado que a mecânica de Hamilton desempenha um papel destacado na forma mais geral do teorema da equipartição.
Como a energia cinética é quadrática nos componentes da velocidade, por equipartição destas três componentes, cada uma contribui com ½kBT para a energia cinética média em equilíbrio térmico. Portanto, a energia cinética da partícula é (3/2)kBT, como no caso do exemplo dos gases nobres discutido previamente.
De forma mais geral, num gás ideal, a energia total consiste exclusivamente de energia cinética de translação: já que se assume que as partículas não possuem graus internos de liberdade e se movem de forma independente umas das outras. A equipartição portanto prediz que a energia total média de um gás ideal com N partículas é (3/2) N kBT.
Portanto, a capacidade térmica de um gás é (3/2) N kB e a capacidade térmica de um mol de partículas de dito gás é (3/2)NAkB=(3/2)R, onde NA é o número de Avogadro e R é a constante universal dos gases perfeitos. Como R ≈ 2 cal/(mol·K), a equipartição prediz que a capacidade térmica molar de um gás ideal é aproximadamente 3 cal/(mol·K). Esta predição foi confirmada experimentalmente.[3]
A energia cinética média também permite calcular a raiz da velocidade quadrática média vrms das partículas de gás, como:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde M = NAm é a massa de um mol de partículas de gás. Este resultado é muito útil para aplicações tais como a Lei de Graham de efusão, da qual se deriva um método para enriquecer Urânio.[4]
Energia rotacional e agitação molecular em solução
Um exemplo similar é o do caso de uma molécula que roda e cujos momentos de inercia principais são I1, I2 e I3. A energia rotacional de dita molécula é dada por:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde ω1, ω2, e ω3 são os componentes da velocidade angular. Seguindo um raciocínio similar ao utilizado no caso da translacção, a equipartição implica que, em equilíbrio térmico, a energia média de rotação de cada partícula é (3/2)kBT. De forma similar, o teorema da equipartição permite calcular a velocidade angular média (mais precisamente, a raiz média quadrática) das moléculas.[5]
A rotação das moléculas rígidas — ou seja, as rotações aleatórias de moléculas em solução — joga um papel de destaque nas relaxações observadas por meio de ressonância magnética nuclear, particularmente por ressonância magnética nuclear de proteínas e por acoplamento dipolar residual.[6] A difusão rotacional pode também ser observada mediante outras técnicas biofísicas tais como a anisotropia fluorescente, a birrefringência de fluxo e a espectroscopia dieléctrica.[7]
Energia potencial e osciladores harmónicos
A equipartição aplica-se tanto à energia potencial com à energia cinética. Exemplo importante disto são os osciladores harmónicos tais como as molas, que possuem una energia potencial quadrática:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde a constante a descreve a rigidez da mola e q é o desvio em relação ao equilíbrio. Se dito sistema unidimensional possui uma massa m, então a sua energia cinética Hkin é ½mv² = p²/2m, com v e p = mv a velocidade e o momento do oscilador, respectivamente. Combinando estes termos obtém-se a energia total[8]:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Deste modo, a equipartição implica que, em equilíbrio térmico, o oscilador possui uma energia média:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde os colchetes angulares representam a média da quantidade contida entre eles.[9]
Este resultado é válido para todo o tipo de osciladores harmónicos, como por exemplo num pêndulo, numa molécula que vibra ou num oscilador electrónico passivo. Existem numerosos sistemas que contêm este tipo de osciladores; mediante a equipartição, cada um destes osciladores recebe uma energia média total kBT e portanto contribui kB para a capacidade térmica do sistema. Esta última relação pode ser usada para obter a fórmula para o ruído de Johnson–Nyquist ou "ruído térmico"[10] e a Lei de Dulong-Petit para a capacidade térmica molar dos sólidos. Esta última aplicação foi especialmente relevante na história da equipartição.
A energia potencial nem sempre possui uma dependência quadrática em relação à posição. No entanto, o teorema da equipartição também demonstra que se um grau de liberdade x contribui somente em uma fracção xs (para um número real fixo s) para a energia, então a energia média em equilíbrio térmico dessa parte é kBT/s.
Esta extensão possui uma aplicação no estudo de sedimentação de partículas sob acção da força de gravidade.[12] Por exemplo, o enevoado que por vezes é observado na cerveja pode ser causada por aglutinações de proteínas que dispersam a luz.[13] Como decorrer do tempo, estas aglutinações deslocam-se para baixo por efeito da força da gravidade, produzindo um aumento do enevoamento próximo da zona inferior do recipiente comparado com a zona superior. No entanto, mediante um processo que opera em direcção contrária, as partículas também difundem em sentido ascendente, em direcção à parte superior do recipiente. Uma vez alcançado o equilíbrio, o teorema da equipartição pode ser utilizado para determinar a posição média de una aglutinação particular de massa flutuante mb. Para o caso de uma garrafa de cerveja de altura infinita, a energia potencial gravitacional é:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde z é a altura da aglutinação de proteínas na garrafa e g é a aceleração da gravidade. Dado que s=1, a energia potencial média de um aglutinação de proteínas é kBT. Portanto, uma aglutinação de proteínas com uma massa flutuante de 10 MDa (aproximadamente do tamanho de um vírus) produziria um enevoamento com uma altura média de aproximadamente 2 cm, em equilíbrio. O processo de sedimentação até se estabelecer um equilíbrio é descrito pela equação de Mason-Weaver.[14]
A forma mais geral do teorema da equipartição[5][9][12] estabelece que sob suposições adequadas (ver parágrafos subsequentes), um sistema físico com uma função de energia hamiltoniana H e graus de liberdade xn, satisfaz a seguinte fórmula de equipartição em equilíbrio térmico para todos os índices m e n:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Onde δmn é o delta de Kronecker, que toma o valor unitário se m=n e o valor nulo em todos os outros casos. Os parêntesis podem-se referir tanto à média de período prolongado de tempo de um sistema, ou mais comummente, à média do conjunto no espaço de fases. As suposições de ergodicidade que estão implícitas no teorema implicam que estes dois tipos de média coincidem, e portanto, ambos têm sido utilizados para calcular as energias internas de sistemas físicos complexos.
O teorema geral da equipartição vale tanto para o conjunto microcanónico,[9] quando a energia total do sistema é constante, como também para o conjunto canónico,[5][33] quando o sistema está acoplado a um banho térmico com o qual se dá intercâmbio de energia. A expressão para a fórmula geral é apresentada em secções posteriores deste artigo.
A fórmula geral é equivalente às seguintes expressões:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =- para todo o n.
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =- para todo o m≠n.
Se um grau de liberdade xn aparece somente como um termo quadrático anxn² num hamiltoniano H, então a primeira fórmula implica que:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
que é o dobro da contribuição que este grau de liberdade aporta para energia média . Portanto, o teorema da equipartição para sistemas com energias quadráticas é facilmente dedutível a partir da fórmula geral. Um argumento similar aplica-se às energias de forma anxns, onde o 2 é substituído por s.
Os graus de liberdade xn são coordenadas no espaço de fase do sistema e portanto comummente subdivididas em coordenadas de posição generalizadas qk e coordenadas de momento generalizadas pk, onde pk é o momento conjugado para qk. Neste caso, a fórmula 1 significa que para todo o k,
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Utilizando as equações da mecânica hamiltoniana,[8] resultam as seguintes fórmulas:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
A fórmula 2 estabelece adicionalmente que as médias
- e
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
são todas zero para j≠k.
Relação com o teorema do virial
O teorema geral da equipartição é uma extensão do teorema do virial (proposto em 1870[34]), que estabelece que:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde t é o tempo.[8] Duas diferenças importantes são que o teorema do virial relaciona média somadas em lugar de médias individuais, entre si, e não as associa com a temperatura T. Outra diferença é que nas derivações tradicionais do teorema do virial utilizam-se médias sobre o tempo, enquanto que aquelas baseadas no teorema da equipartição usam médias sobre o espaço de fase.
Aplicações
Lei dos gases ideais
Os gases ideais dão um exemplo importante da aplicação do teorema da equipartição. A fórmula, em dito caso, resulta ser:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
para a energia cinética média de uma partícula, o teorema da equipartição pode ser utilizado para obter a lei dos gases ideais da mecânica clássica.[5] Se q = (qx, qy, qz) e p = (px, py, pz) são os vectores de posição e de momento (quantidade de movimento) de uma partícula do gás, e F é a força líquida sobre a partícula, então:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde a primeira igualdade é a segunda lei de Newton, e a segunda linha utiliza as equações de Hamilton e a fórmula de equipartição. Somando num sistema de N partículas, obtém-se:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Devido à terceira lei de Newton e à hipótese de gás ideal, a força líquida sobre o sistema é a força exercida pelas paredes do recipiente, e esta força é dada pela pressão P do gás. Portanto:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde dS é o elemento infinitesimal de área ao longo das paredes do recipiente. Dado que a divergência do vector posição q é:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Aplicando o Teorema da Divergência, resulta:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde dV é um volume infinitesimal dentro do recipiente e V é o volume total do recipiente.
Agrupando estas igualdades, obtém-se:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
o qual imediatamente implica a lei dos gases ideais para N partículas:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde n=N/NA é o número de mol de gás e R=NAkB é a constante do gás.
Apesar de a equipartição providenciar uma simples derivação da lei dos gases ideais e da energia interna, o mesmo resultado pode ser obtido por um método alternativo usando a Função de partição.[35]
Gases diatómicos
Um gás diatómico pode ser modelado como duas massas, m1 e m2, unidas por uma mola com rigidez a, sistema a que pode dado o nome de aproximação do rotor rígido/oscilador harmónico.[19] A energia clássica deste sistema é:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Comentários
Postar um comentário